
曾祥哲

 xzos.net |  github.com/xz-dev |✉ xz@xzos.net |  +86 15530859511

专业技能
• 云原生与 DevOps：Azure (Container, Functions, Serverless)，Kubernetes (Helm, KEDA)，Docker多阶段构

建，GitHub Actions (CI/CD)，Google Cloud Platform (Cloud Run)，私有云/混合云部署架
构，零停机部署策略

• 后端架构：微服务架构，分布式系统设计，OAuth2.0/OIDC统一认证网关，Python (FastAPI, asyncio)，Type-
Script (Node.js/Express)，gRPC，Redis缓存策略，PostgreSQL

• AI基础设施与协议：Model Context Protocol (MCP)核心开发，OpenAPI/Swagger解析与转换引擎 (Strata)，
AI Agent工具链集成，LLM上下文管理，BM25+向量检索算法

• 系统编程与底层：Rust，C/C++，GNU/Linux发行版构建 (Gentoo)，内核模块调试，WebAssembly，嵌入式
开发

• 前端技术：Next.js (SSR)，React，Astro，Material Design

• 编程语言：Kotlin，Java，Python3，C#，Rust，C，PowerShell，Bash Script，JavaScript，TypeScript，SQL

• 开发工具：Emacs，(Neo)Vim

• 证书：RISC-V Foundational Associate (RVFA)，红帽认证工程师 (RHCE) - 285/300，红帽认证系统管理员
(RHCSA) -满分

开源贡献和技能亮点
• Klavis AI开源生态 (AI Agent & MCP协议)：

1. Code Owner：累计提交 349次，贡献代码 165万 +行。主导 Open-Strata开源项目，将企业级 OpenAPI转换引擎
回馈社区

2. PR#788：实现基于进程隔离的 Playwright MCP Server，解决多租户浏览器自动化的安全与资源隔离问题
3. PR#833 / PR#836：扩展MCP生态，集成 Azure AD、Sentry、HuggingFace等 10+服务的 OAuth认证与工具定义

• 个人开源项目：

1. UpgradeAll (1k+)：跨平台应用更新管理器。采用 Kotlin (Android) + Rust (Core)架构，设计了模块化的更新源插
件系统

2. distrobox-boost / numlockw：Rust容器运行时优化工具与Wayland协议底层输入控制工具

• 底层系统与社区贡献：

1. Gentoo Linux：维护者，贡献了 sys-fs/zfs (内核实验特性 PR#44885)、kde-plasma等关键包的修补与维护
2. CachyOS-kernels：CachyOS优化内核 Gentoo overlay维护者，第一时间跟进上游内核更新并维护补丁兼容性
3. virtio-win (Windows半虚拟化驱动)：

– viogpu驱动：实现动态帧缓冲区大小调整，支持 8K+分辨率的间接描述符 (PR#1479)，修复错误路径中的蓝屏
崩溃 (PR#1473)及初始化失败时的资源泄漏 (PR#1475)

– 安装程序：修复驱动占用时升级失败的问题，避免系统升级时出现 error 1603 (PR#85)
4. GradleAndroidRustPlugin：解决 Rust/Android交叉编译时的 ABI兼容性与 Gradle 9升级适配 (PR#10, PR#11)
5. InfiniTime：为智能手表固件贡献 CMake构建修复与中文支持 (PR#2143)

• 曾入选 Linux基金会人才激励计划，适应跨时区合作的工作

Power by LaTeX and Emacs. Written by Xiangzhe and AI

https://xzos.net
https://github.com/xz-dev
mailto:xz@xzos.net
tel:+8615530859511
https://github.com/Klavis-AI/klavis/pull/788
https://github.com/Klavis-AI/klavis/pull/833
https://github.com/Klavis-AI/klavis/pull/836
https://github.com/DUpdateSystem/UpgradeAll
https://github.com/xz-dev/distrobox-boost
https://github.com/xz-dev/numlockw
https://github.com/gentoo/gentoo/pull/44885
https://github.com/Szowisz/CachyOS-kernels
https://github.com/virtio-win/kvm-guest-drivers-windows/pull/1479
https://github.com/virtio-win/kvm-guest-drivers-windows/pull/1473
https://github.com/virtio-win/kvm-guest-drivers-windows/pull/1475
https://github.com/virtio-win/virtio-win-guest-tools-installer/pull/85
https://github.com/MatrixDev/GradleAndroidRustPlugin/pull/10
https://github.com/MatrixDev/GradleAndroidRustPlugin/pull/11
https://github.com/InfiniTimeOrg/InfiniTime/pull/2143

工作经历
Klavis AI -全栈工程师 2025.7 - 2025.12
作为核心创始工程师，主导 AI Agent 集成平台的基础设施建设。负责从底层协议实现 (MCP) 到上层 OpenAPI 转换引擎

(Strata)的全栈架构设计，解决了 AI模型与外部 20+ SaaS服务互操作的标准化难题。
核心架构与平台建设：

• 主导研发 Strata OpenAPI引擎：设计核心解析引擎，能够将任意OpenAPI v2/v3规范自动转换为标准化的MCP工具定义

• 极致性能优化：通过 OpenAPI对象预构建缓存和 jsonref深度解析优化，将复杂规范的解析加载时间从 15分钟（单线程）
缩短至 3秒，性能提升 300倍

• 生产环境价值：彻底解决了 Google Cloud Run在 Serverless冷启动和高并发扩容时的性能瓶颈，实现了零停机部署

• 设计企业级 MCP运行时架构：基于进程隔离模型确保 Playwright等高风险工具在独立沙箱中运行；构建支持 Microsoft
Entra (Azure AD)、GitHub、PayPal、Sentry等 10+平台的统一 OAuth认证网关

DevOps与私有云交付：

• 从零构建私有化部署架构：设计并实施基于 Kubernetes + Helm的完整私有云交付方案，实现MCP服务的按需加载与自
动休眠机制

• 弹性伸缩：集成 KEDA HTTP Add-on，实现基于实时 HTTP流量的 Pod自动扩缩容

• 全栈 CI/CD流水线：构建 GitHub Actions自动化体系，实现 Docker镜像的多架构 (amd64/arm64)构建与自动分发

微软（外包） - Office365互操作性和合规项目 -全栈工程师 2023.10 - 2025.7
负责 Office文档生态系统的工具链开发与合规性工程，主导了内部系统的云原生转型与自动化测试体系建设。

• 云原生架构转型：将遗留的.NET Framework单体应用解耦为基于 Azure Container和 Azure Functions的微服务架构，
利用 Azure Managed Identity替代传统凭据，将资源成本降低 85%并消除了安全合规风险

• 自动化测试平台：设计”代码即配置”的 Python自动化测试框架，结合 OCR视觉识别技术和 GPT模型，实现了 Office
Word字符渲染兼容性的端到端自动化测试，将人工测试工作量减少 80%

• 文档工程智能化：深入研究 Office Open XML (OOXML)底层结构，开发基于 LLM的文档术语一致性校验工具，将 GB认
证文档的修正效率提升 96%（从 2.5小时缩短至 5分钟）

拓维信息 -联通 A股门户网站 - JAVA后端开发 2022.2 - 2022.7
联通为宣传 A股的门户网站，因年久失修且技术落后，难以部署与维护网站内容。负责项目后端的微服务设计和代码重写，

并实现了 k8s的流水线部署与自动化扩/缩容。

• 使用微服务架构进行项目重构

• 采用敏捷开发方法开发

• 实现了可动态拓展的 k8s部署

项目经历
Klavis AI - Strata OpenAPI集成平台 - Python开发 2025.8 - 2025.12
项目背景：AI Agent需要调用各种外部 API，但每个 API都有不同的规范和认证方式。Strata平台旨在将任意 OpenAPI规

范自动转换为MCP工具，实现 AI Agent对 API的无缝调用。
项目贡献：

• 从零搭建项目架构，设计可扩展的服务注册机制，实现 OpenAPI v2/v3规范的解析与自动转换

• 实现 BM25+搜索算法用于 API文档检索，支持标签过滤和统一搜索接口

• 设计懒加载架构实现MCP服务器按需加载，显著降低内存占用和启动时间

• 实现 tool_lists缓存机制和 OpenAPI对象预构建缓存，CI阶段预热加速生产环境启动

项目成果：

• 成功集成 Cloudflare、GitLab、Vercel、GitHub、Discord、PayPal、Sentry等 20+个 SaaS服务

Power by LaTeX and Emacs. Written by Xiangzhe and AI

• 开源发布 Open-Strata 1.0.2，将企业级 OpenAPI转换引擎回馈社区

Klavis AI - MCP Server开发与认证集成 - Python开发 2025.7 - 2025.12
项目背景：Model Context Protocol (MCP)是 AI Agent与外部工具交互的标准协议。为扩展 Klavis平台的工具生态，需要

开发新的MCP Server并构建统一的 OAuth认证网关。
项目贡献：

• 独立开发 4个MCPServer：Dropbox (文件管理)、QuickBooks (财务CRUD)、MicrosoftOffice365 (Teams/Outlook/OneDrive)、
Playwright (浏览器自动化)，并优化多个现有服务

• 设计进程隔离架构：Playwright Server采用独立沙箱运行，解决多租户环境下的安全与资源隔离问题

• 构建统一 OAuth认证网关：完整实现Microsoft Entra (Azure AD)企业级认证，集成 Discord、GitLab、Vercel、Shopify
等 10+平台

• 设计 Tool Call Logs系统：实现用户级别 API调用追踪与后台异步日志写入，实现 AI Agent与MCP Tools调用的可调试性

Klavis AI - MCP Sandbox测试框架 - Python开发 2025.9 - 2025.12
项目背景：MCP集成涉及多个外部服务，需要沙盒测试环境来验证功能正确性并保证集成质量。
项目贡献：

• 设计并实现 7个沙盒测试环境：覆盖 Cal.com、QuickBooks、Dropbox、Shopify等服务的完整功能测试

• 建立严格内容验证机制与 Token刷新逻辑测试，实现MCP集成的自动化质量保障

Klavis AI -私有云部署方案 - DevOps开发 2025.11 - 2025.12
项目背景：企业客户需要在自有基础设施上部署 Klavis平台，需要设计完整的私有云/On-Premise部署方案。
项目贡献：

• 从零搭建 Kubernetes + Helm部署架构：完整的 Helm Chart配置、服务编排和依赖管理

• 集成 KEDA HTTP Add-on：实现基于 HTTP流量的 Pod自动扩缩容

• 设计 ClusterIP + Endpoints同步方案替代 ExternalName，优化超时配置

• 编写中英文 README、故障排查指南和流量路径图

项目成果：

• 实现可扩展的企业级私有云部署架构

• 支持MCP服务的按需加载与自动休眠，优化资源利用率

开源项目 - UpgradeAll全栈应用更新器 -项目发起人 2019.4 -至今
项目链接: UpgradeAll (Kotlin/Rust客户端)，Server (Python服务端，2020.3-2022.6.5)
领导六人团队进行协作开发免费开源软件 UpgradeAll，解决传统更新存在的软件发布碎片化的问题。简化 Android应用（包

括未安装的应用）、Magisk模块等的更新查找过程。项目致力于提供高速且易用的应用更新体验。客户端获得 1k+Star
客户端亮点（Kotlin+Rust）：

• 采用 Kotlin开发前端，实现Material Design界面及相关组件

• 使用 Rust开发高性能后端库，采用模块化代码设计，内核可独立使用

• 实现高度可自定义设置，支持通过 Json配置更新来源。内嵌 JavaScript引擎实现应用热更新能力

服务端亮点（Python）：

• 提供客户端 gRPC和 REST接口，支持从 GitHub、GitLab、F-Droid、Play Store等多个源获取应用更新

• 使用 ZeroMQ实现微服务架构与服务发现，设计可横向扩展的多层缓存服务架构

• 采用 Redis实现分布式数据缓存，使用 Docker容器化技术部署服务

项目成果：

• 将 30分钟更新时间缩短至 2分钟显著缩短用户应用更新时间，将原本需要手动查找的过程自动化

• 构建一站式应用更新平台，集成多个更新源

Power by LaTeX and Emacs. Written by Xiangzhe and AI

https://github.com/DUpdateSystem/UpgradeAll
https://github.com/DUpdateSystem/Server

微软 - Office Word自动化测试平台 - Python开发 2024.3 - 2025.7
项目背景：Office Word需要大量字符兼容性和渲染测试来确保产品质量，传统人工测试方法效率低下且占用测试团队大量

资源。为解决这一问题，我负责开发自动化测试平台，实现每周数百个测试用例的自动执行。
项目贡献：

• 设计并实现 Python自动化测试框架，专用于 Office Word软件的兼容性验证

• 创新性采用”代码即配置”的测试系统架构，使测试人员能通过 AI辅助和 IDE环境高效定义测试规则

• 集成Windows API接口模拟用户操作，构建端到端的自动化测试流程

• 开发基于 OCR技术的渲染结果识别系统，提高字符兼容性测试的准确性

• 实现虚拟机环境中的批量测试调度功能，支持大规模并行测试执行

项目成果：

• 实现每周自动执行 800+测试用例，测试覆盖率显著提升。将测试团队投入的人工测试时间减少约 50%

• 通过系统化测试提高产品质量，降低字符渲染相关问题的用户反馈率

微软 - GB文档校验与修正工具 - Python开发 2024.6 - 2025.7
项目背景：微软 Office套件需通过 GB认证，要求测试团队提供标准化的测试结果文档。但合并文档时，常面临术语不统一

和格式错乱等问题。为解决这些问题，我开发自动化工具对文档进行校验与修正，确保提交的文档符合标准要求。
项目贡献：

• 深入研究Word文档 Open XML内部结构，掌握文档格式控制机制

• 实现 python-docx未支持的剪切、复制和粘贴功能

• 利用 LLM实现专业术语智能替换功能，确保文档术语表达一致性

• 利用 python-docx和 oxml库进行 OXML底层操作，解决了多文档合并后出现排版错误的问题

项目成果：

• 将文档校验与修正时间减少 96.67%，从人均 2.5小时缩短至 5分钟

• 确保所有 GB认证文档的术语一致性和格式规范性，提高认证通过率

• 减少测试团队在文档格式调整上的工作量，使其专注于测试内容本身

• 编写技术博客”Cut and move Runs via python-docx”，为开源社区贡献解决方案

微软 - Gendox文档管理系统 - C#开发 2023.10 - 2025.7
项目背景：Gendox是微软内部的文档管理工具，以Word插件形式自动转化为 wiki。为产品经理提供结构化文档编写环境，

采用”先建菜单再填内容”的方法，支持文档片段跨文档共享与同步修改。该项目涵盖从编辑到发布的全流程，集成了版本控制、
自动化构建和安全保障等核心功能。
项目贡献：

• 调研 GenDox插件加载与运行效率，开发基于 Python和图像识别的自动化测试工具

• 基于 Azure Pipeline构建自动发布系统，实现新版本的持续交付。并重构 Release工具

• 设计 Azure Function自动归档方案，集成 PowerBI自动化遥测数据采集生成实时看板与邮件预警系统

• 升级安全模型，将基于密码的认证迁移至 Azure Managed Identity，并编写标准化迁移文档

• 开发基于 Azure Serverless的自动化工具，实现 VM的 Patch Tuesday更新自动应用

项目成果：

• 高效处理每周高达 30G、40万文件的 Release文件

• 简化团队协作流程，减少新版本测试时间，消除跨团队人工交接，节省每次发布约 3人/天的工作量

• 实现日志自动检查，消除人工审查可能造成的遗漏风险，减少潜在延误和损失

• 自动化月度维护工作，节省每月 1人/天的系统检查与更新时间

• 完成微软 Q3季度安全要求，提升系统整体安全性

Power by LaTeX and Emacs. Written by Xiangzhe and AI

https://xzos.net/cut-and-move-runs-via-python-docx/

微软 - Interop部门数据同步与培训管理系统改进 - C#开发 2023.10 - 2025.7
项目背景：该系统作为 Office Interop部门的核心工具，承担跨项目人员和文档的数据仓库同步，和员工培训管理两大关键

职能。旧系统存在运行缓慢，技术与安全架构落后等问题。
项目贡献：

• 原有基于 Task Scheduler的固定时间执行模式每天运行超过 12小时，用 Power Shell实现服务依赖脚本和碎片化执行

• 升级项目安全架构以满足最新安全标准，将 CodeQL集成至 Azure Pipeline，实现代码安全的自动化检测与持续集成

• 领导项目微服务化转型，将单体应用解耦为独立服务组件，通过 Azure Container技术实现从.NET Framework向.NET

项目成果：

• 将 Azure资源费用降低 85%，调度系统将运行时间降低 50%，提升吞吐量等和稳定性

• 全面达成微软最新安全合规要求，微服务架构彻底消除 VM维护相关的安全风险

• 微服务的灰度迁移方案实现系统零中断升级，保障用户体验持续平稳流畅

清华大学实验室项目 -基于 IPFS的文件分享应用 - Android客户端开发 2021.4 - 2021.5
项目背景：传统的文件传输方式存在带宽限制、服务器依赖性高等问题。该项目旨在利用 IPFS (星际文件系统)的分布式特性，

构建一个同时支持面对面高速传输和远距离稳定共享的文件分享应用。
指导老师：赵黎
项目贡献：

• 设计并开发 Android客户端原型，实现核心功能和用户界面

• 集成 IPFS协议，构建高效的 P2P文件传输网络

• 实现基于Wi-Fi Direct的面对面传输功能，大幅提高近距离传输速度

• 开发端到端加密系统，确保文件传输安全性

• 设计直观的文件预览界面，优化用户体验

项目成果：

• 近距离传输速度达到传统云存储解决方案的 3-5倍，达到 1GB/S

• 成功实现不依赖中心服务器的 P2P文件分享系统，提高性能和稳定性。

• 作为研究生课题的核心实现部分，获得指导老师高度评价

教育经历
华北理工大学 -计算机科学与技术 -本科 2023.6
课程：网络原理，计算机原理，软件工程，算法设计与分析，面向对象程序设计，数据库原理，操作系统（助教）

获奖经历
ASC18世界大学生超级计算机竞赛 -二等奖

Power by LaTeX and Emacs. Written by Xiangzhe and AI

Xiangzhe Zeng

 xzos.net |  github.com/xz-dev |✉ xz@xzos.net |  +86 15530859511

Professional Skills
• Cloud Native & DevOps: Azure (Container, Functions, Serverless), Kubernetes (Helm, KEDA), Docker multi-stage

builds, GitHub Actions (CI/CD), Google Cloud Platform (Cloud Run), Private/hybrid
cloud deployment architecture, Zero-downtime deployment strategies

• Backend Architecture: Microservice architecture, Distributed systems design, OAuth2.0/OIDC unified authentica-
tion gateway, Python (FastAPI, asyncio), TypeScript (Node.js/Express), gRPC, Redis caching
strategies, PostgreSQL

• AI Infrastructure & Protocols: Model Context Protocol (MCP) core development, OpenAPI/Swagger parsing and
conversion engine (Strata), AI Agent toolchain integration, LLM context manage-
ment, BM25+ vector retrieval algorithms

• SystemsProgramming&Low-level: Rust, C/C++, GNU/Linux distribution building (Gentoo), Kernel module debug-
ging, WebAssembly, Embedded development

• Frontend Technology: Next.js (SSR), React, Astro, Material Design

• Programming Languages: Kotlin, Java, Python3, C#, Rust, C, PowerShell, Bash Script, JavaScript, TypeScript, SQL

• Development Tools: Emacs, (Neo)Vim

• Certifications: RISC-V Foundational Associate (RVFA), Red Hat Certified Engineer (RHCE) - 285/300, Red Hat Cer-
tified System Administrator (RHCSA) - Perfect Score

Open Source Contributions and Key Skills
• Klavis AI Open Source Ecosystem (AI Agent & MCP Protocol):

1. Code Owner: 349 commits, contributed 1.65M+ lines of code. Led the Open-Strata open source project, con-
tributing the enterprise-grade OpenAPI conversion engine back to the community

2. PR#788: Implemented process-isolated Playwright MCP Server, solving security and resource isolation issues
for multi-tenant browser automation

3. PR#833 / PR#836: Extended MCP ecosystem, integrating OAuth authentication and tool definitions for 10+
services including Azure AD, Sentry, HuggingFace

• Personal Open Source Projects:

1. UpgradeAll (1k+): Cross-platform application update manager. Built with Kotlin (Android) + Rust (Core) ar-
chitecture, designed modular update source plugin system

2. distrobox-boost / numlockw: Rust container runtime optimization tool and Wayland protocol low-level input
control tool

• Low-level Systems & Community Contributions:

1. Gentoo Linux: Maintainer, contributed patches for sys-fs/zfs (kernel experimental features PR#44885), kde-
plasma, and other critical packages

2. CachyOS-kernels: Maintainer of Gentoo overlay for CachyOS optimized kernels, actively tracking upstream
kernel releases and maintaining patch compatibility

3. virtio-win (Windows Paravirtualization Drivers):
– viogpu Driver: Implemented dynamic framebuffer resizing with indirect descriptor support for 8K+ reso-
lutions (PR#1479), fixed BSOD crash in error path (PR#1473), and resource leak on init failure (PR#1475)

– Installer: Fixed driver upgrade failure when drivers are in use, preventing error 1603 during system up-
grades (PR#85)

4. GradleAndroidRustPlugin: Resolved Rust/Android cross-compilation ABI compatibility and Gradle 9 upgrade
adaptation (PR#10, PR#11)

5. InfiniTime: Contributed CMake build fixes and Chinese support for smartwatch firmware (PR#2143)

• Selected for Linux Foundation Talent Incentive Program, adaptable to cross-timezone collaboration

Power by LaTeX and Emacs. Written by Xiangzhe and AI

https://xzos.net
https://github.com/xz-dev
mailto:xz@xzos.net
tel:+8615530859511
https://github.com/Klavis-AI/klavis/pull/788
https://github.com/Klavis-AI/klavis/pull/833
https://github.com/Klavis-AI/klavis/pull/836
https://github.com/DUpdateSystem/UpgradeAll
https://github.com/xz-dev/distrobox-boost
https://github.com/xz-dev/numlockw
https://github.com/gentoo/gentoo/pull/44885
https://github.com/Szowisz/CachyOS-kernels
https://github.com/virtio-win/kvm-guest-drivers-windows/pull/1479
https://github.com/virtio-win/kvm-guest-drivers-windows/pull/1473
https://github.com/virtio-win/kvm-guest-drivers-windows/pull/1475
https://github.com/virtio-win/virtio-win-guest-tools-installer/pull/85
https://github.com/MatrixDev/GradleAndroidRustPlugin/pull/10
https://github.com/MatrixDev/GradleAndroidRustPlugin/pull/11
https://github.com/InfiniTimeOrg/InfiniTime/pull/2143

Work Experience
Klavis AI - Full Stack Engineer / MCP Platform Architect 2025.7 - 2025.12

As a core founding engineer, led the infrastructure development for the AI Agent integration platform. Responsible
for full-stack architecture design from low-level protocol implementation (MCP) to the upper-layer OpenAPI conversion
engine (Strata), solving the standardization challenges of AI model interoperability with 20+ external SaaS services.

Core Architecture & Platform Development:

• Led Strata OpenAPI Engine Development: Designed the core parsing engine capable of automatically converting
any OpenAPI v2/v3 specification into standardized MCP tool definitions

• Extreme Performance Optimization: ThroughOpenAPI object pre-build caching and jsonref deep parsing optimiza-
tion, reduced complex specification parsing time from 15 minutes (single-threaded) to 3 seconds, a 300x perfor-
mance improvement

• Production Value: Completely resolved Google Cloud Run performance bottlenecks during Serverless cold starts
and high-concurrency scaling, achieving zero-downtime deployment

• Enterprise MCP Runtime Architecture: Designed process isolation model ensuring high-risk tools like Playwright
run in independent sandboxes; built unified OAuth authentication gateway supporting 10+ platforms including
Microsoft Entra (Azure AD), GitHub, PayPal, Sentry

DevOps & Private Cloud Delivery:

• Built On-Premise Deployment Architecture from Scratch: Designed and implemented complete private cloud de-
livery solution based on Kubernetes + Helm, implementing on-demand loading and auto-hibernation mechanisms
for MCP services

• Elastic Scaling: Integrated KEDA HTTP Add-on, implementing Pod auto-scaling based on real-time HTTP traffic

• Full-Stack CI/CDPipeline: Built GitHubActions automation system, implementingmulti-architecture (amd64/arm64)
Docker image builds, security scanning (Trivy), and automatic distribution

Microsoft (Vendor) - Office365 Interoperability and Compliance Project - Full Stack Engineer 2023.10 - 2025.7
Responsible for toolchain development and compliance engineering for the Office document ecosystem, led cloud-

native transformation of internal systems and automated testing infrastructure development.

• Cloud-Native Architecture Transformation: Decoupled legacy .NET Framework monolithic applications into mi-
croservice architecture based on Azure Container and Azure Functions, replaced traditional credentials with Azure
Managed Identity, reducing resource costs by 85% and eliminating security compliance risks

• Automated Testing Platform: Designed ”code as configuration” Python automation testing framework, combined
OCR visual recognition technology and GPT models, implemented end-to-end automated testing for Office Word
character rendering compatibility, reducing manual testing workload by 80%

• Document Engineering Intelligence: Deep research intoOfficeOpen XML (OOXML) underlying structure, developed
LLM-based document terminology consistency verification tool, improving GB certification document correction
efficiency by 96% (from 2.5 hours to 5 minutes)

Talkweb Information - China Unicom A-Share Portal Website - JAVA Backend Developer 2022.2 - 2022.7
The Unicom A-Share portal website, due to years of neglect and outdated technology, was difficult to deploy and

maintain. Responsible for the microservice design and code rewrite of the project backend, implementing k8s pipeline
deployment and automated scaling.

• Restructured the project using microservice architecture

• Adopted agile development methods

• Implemented dynamically scalable k8s deployment

Power by LaTeX and Emacs. Written by Xiangzhe and AI

Project Experience
Open Source Project - UpgradeAll Full Stack Application Updater - Project Initiator 2019.4 - Present

Project Links: UpgradeAll (Kotlin/Rust client), Server (Python server, 2020.3-2022.6.5)
Led a six-person team in collaborative development of the free open-source software UpgradeAll, solving the frag-

mentation problem in traditional software updates. Simplified the update search process for Android applications (in-
cluding uninstalled apps), Magisk modules, etc. The project aims to provide a fast and user-friendly application update
experience. The client has received 1k+ Stars.

Client Highlights (Kotlin+Rust):

• Developed frontend with Kotlin, implementing Material Design interface and related components

• Developed high-performance backend library using Rust, with modular code design; the kernel can be used inde-
pendently

• Implementedhighly customizable settings, supportingupdate sources configuration via Json. Embedded JavaScript
engine enabling application hot update capability

Server Highlights (Python):

• Provided client gRPC and REST interfaces, supporting application updates frommultiple sources including GitHub,
GitLab, F-Droid, Play Store, etc.

• Used ZeroMQ to implementmicroservice architecture and service discovery, designed a horizontally scalablemulti-
layer cache service architecture

• Used Redis to implement distributed data caching, deployed services using Docker containerization technology

Project Outcomes:

• Significantly reduced user application update time from 30 minutes to 2 minutes, automating what was previously
a manual search process

• Built a one-stop application update platform integrating multiple update sources

Microsoft - Office Word Automated Testing Platform - Python Development 2024.3 - 2025.7
Project Background: Office Word requires extensive character compatibility and rendering tests to ensure product

quality. Traditional manual testing methods are inefficient and consume significant resources from the testing team. To
address this issue, I was responsible for developing an automated testing platform to execute hundreds of test cases
weekly.

Project Contributions:

• Designed and implemented a Python automation testing framework specifically for Office Word software compat-
ibility verification

• Innovatively adopted a ”code as configuration” test system architecture, allowing testers to efficiently define test
rules through AI assistance and IDE environment

• Integrated Windows API interfaces to simulate user operations, building end-to-end automated testing processes

• Developed an OCR-based rendering result recognition system to improve the accuracy of character compatibility
testing

• Implemented batch test scheduling in virtual machine environments to support large-scale parallel test execution

Project Outcomes:

• Achieved automated execution of 800+ test cases weekly, significantly improving test coverage. Reduced manual
testing time by approximately 50%

• Improved product quality through systematic testing, reducing user feedback rates for character rendering issues

Microsoft - GB Document Verification and Correction Tool - Python Development 2024.6 - 2025.7
Project Background: Microsoft Office suite needs to pass GB certification, requiring standardized test result docu-

ments from the testing team. Whenmerging documents, issues such as inconsistent terminology and format disruption
often occur. To solve these problems, I developed an automated tool to verify and correct documents, ensuring they
meet standard requirements.

Project Contributions:

Power by LaTeX and Emacs. Written by Xiangzhe and AI

https://github.com/DUpdateSystem/UpgradeAll
https://github.com/DUpdateSystem/Server

• Thoroughly researched the internal structure of Word document Open XML, mastering document format control
mechanisms

• Implemented cut, copy, and paste functionalities not supported by python-docx

• Utilized LLM for intelligent replacement of professional terminology, ensuring document terminology consistency

• Used python-docx and oxml libraries for OXML low-level operations, solving formatting errors that occurred after
merging multiple documents

Project Outcomes:

• Reduced document verification and correction time by 96.67%, from an average of 2.5 hours to 5 minutes per
person

• Ensured terminology consistency and format standardization for all GB certification documents, improving certifi-
cation pass rates

• Reduced the testing team’s workload on document formatting adjustments, allowing them to focus on the test
content itself

• Wrote a technical blog ”Cut andmove Runs via python-docx”, contributing solutions to the open source community

Microsoft - Gendox Document Management System - C# Development 2023.10 - 2025.7
Project Background: Gendox is Microsoft’s internal documentmanagement tool, which automatically converts to wiki

in the form of a Word plugin. It provides product managers with a structured document writing environment, adopting
the ”build menu first, then fill in content” method, supporting cross-document sharing and synchronous modification of
document fragments. The project covers the entire process from editing to publishing, integrating core functions such
as version control, automated building, and security assurance.

Project Contributions:

• Researched GenDox plugin loading and running efficiency, developed Python-based and image recognition-based
automated testing tools

• Built an automatic publishing system based on Azure Pipeline, achieving continuous delivery of new versions.
Refactored the Release tool

• Designed an Azure Function automatic archiving solution, integrated PowerBI automated telemetry data collection
to generate real-time dashboards and email alert systems

• Upgraded the security model, migrating from password-based authentication to Azure Managed Identity, and
wrote standardized migration documentation

• Developed Azure Serverless-based automation tools to automatically apply Patch Tuesday updates for VMs

Project Outcomes:

• Efficiently processed up to 30GB and 400,000 files weekly for releases

• Simplified team collaboration processes, reduced new version testing time, eliminated cross-team manual han-
dovers, saving approximately 3 person-days of work per release

• Implemented automatic log checking, eliminating oversight risks from manual reviews, reducing potential delays
and losses

• Automated monthly maintenance work, saving 1 person-day per month for system inspection and updates

• Completed Microsoft Q3 quarter security requirements, enhancing overall system security

Microsoft - Interop Department Data Synchronization and Training Management System Improvement - C# Develop-
ment 2023.10 -
2025.7

Project Background: This system serves as a core tool for the Office Interop department, undertaking two key func-
tions: cross-project personnel and document data warehouse synchronization, and employee training management.
The old system had issues such as slow operation, outdated technology, and security architecture.

Project Contributions:

• The original Task Scheduler-based fixed-time execution mode ran for over 12 hours daily; implemented service
dependency scripts and fragmented execution with PowerShell

Power by LaTeX and Emacs. Written by Xiangzhe and AI

https://xzos.net/cut-and-move-runs-via-python-docx/

• Upgraded the project security architecture to meet the latest security standards, integrated CodeQL into Azure
Pipeline to achieve automated detection and continuous integration of code security

• Led the project’smicroservice transformation, decoupling themonolithic application into independent service com-
ponents, implementing migration from .NET Framework to .NET through Azure Container technology

Project Outcomes:

• Reduced Azure resource costs by 85%, decreased scheduling system runtime by 50%, improved throughput and
stability

• Fully met Microsoft’s latest security compliance requirements; microservice architecture completely eliminated VM
maintenance-related security risks

• Themicroservice graymigration solution achieved zero-downtime systemupgrades, ensuring a continuously smooth
user experience

Tsinghua University Laboratory Project - IPFS-based File Sharing Application - Android Client Development 2021.4 -
2021.5

Project Background: Traditional file transfer methods face bandwidth limitations and high server dependency. This
project aimed to leverage the distributed nature of IPFS (InterPlanetary File System) to build a file sharing application
that supports both face-to-face high-speed transmission and stable long-distance sharing.

Supervisor: Li Zhao
Project Contributions:

• Designed and developed Android client prototype, implementing core functionalities and user interface

• Integrated IPFS protocol, building an efficient P2P file transfer network

• Implemented Wi-Fi Direct-based face-to-face transfer functionality, significantly improving short-distance transfer
speed

• Developed end-to-end encryption system, ensuring file transfer security

• Designed intuitive file preview interface, optimizing user experience

Project Outcomes:

• Short-distance transfer speed reached 3-5 times that of traditional cloud storage solutions, achieving 1GB/S

• Successfully implemented a P2P file sharing systemwithout relying on central servers, improving performance and
stability

• Served as the core implementation part of a graduate thesis, highly praised by the supervisor

Education
North China University of Science and Technology - Computer Science and Technology - Bachelor’s Degree 2023.6
Courses: Network Principles, Computer Principles, Software Engineering, Algorithm Design and Analysis, Object-

oriented Programming, Database Principles, Operating Systems (Teaching Assistant)

Awards & Honors
ASC18 World University Supercomputer Competition - Second Prize

Power by LaTeX and Emacs. Written by Xiangzhe and AI

