Xiangzhe Zeng
Q@ xzos.net | @ github.com/xz-dev | & xz@xzos.net | & +86 15530859511

Professional Skills

*+ Cloud Native & DevOps: Azure (Container, Functions, Serverless), Kubernetes (Helm, KEDA), Docker multi-stage
builds, GitHub Actions (CI/CD), Google Cloud Platform (Cloud Run), Private/hybrid
cloud deployment architecture, Zero-downtime deployment strategies

* Backend Architecture: Microservice architecture, Distributed systems design, OAuth2.0/0IDC unified authentica-
tion gateway, Python (FastAPI, asyncio), TypeScript (Node.js/Express), gRPC, Redis caching
strategies, PostgreSQL

+ Al Infrastructure & Protocols: Model Context Protocol (MCP) core development, OpenAPl/Swagger parsing and
conversion engine (Strata), Al Agent toolchain integration, LLM context manage-
ment, BM25+ vector retrieval algorithms

+ Systems Programming & Low-level: Rust, C/C++, GNU/Linux distribution building (Gentoo), Kernel module debug-
ging, WebAssembly, Embedded development

* Frontend Technology: Next.js (SSR), React, Astro, Material Design
* Programming Languages: Kotlin, Java, Python3, C#, Rust, C, PowerShell, Bash Script, JavaScript, TypeScript, SQL
+ Development Tools: Emacs, (Neo)Vim

* Certifications: RISC-V Foundational Associate (RVFA), Red Hat Certified Engineer (RHCE) - 285/300, Red Hat Cer-
tified System Administrator (RHCSA) - Perfect Score

Open Source Contributions and Key Skills

+ Klavis Al Open Source Ecosystem (Al Agent & MCP Protocol):
1. Code Owner: 349 commits, contributed 1.65M+ lines of code. Led the Open-Strata open source project, con-
tributing the enterprise-grade OpenAPI conversion engine back to the community

2. PR#788: Implemented process-isolated Playwright MCP Server, solving security and resource isolation issues
for multi-tenant browser automation

3. PR#833 / PR#836: Extended MCP ecosystem, integrating OAuth authentication and tool definitions for 10+
services including Azure AD, Sentry, HuggingFace
* Personal Open Source Projects:
1. UpgradeAll (1k+¥): Cross-platform application update manager. Built with Kotlin (Android) + Rust (Core) ar-
chitecture, designed modular update source plugin system
2. distrobox-boost / numlockw: Rust container runtime optimization tool and Wayland protocol low-level input
control tool
* Low-level Systems & Community Contributions:
1. Gentoo Linux: Maintainer, contributed patches for sys-fs/zfs (kernel experimental features PR#44885), kde-
plasma, and other critical packages

2. CachyOS-kernels: Maintainer of Gentoo overlay for CachyOS optimized kernels, actively tracking upstream
kernel releases and maintaining patch compatibility

3. virtio-win (Windows Paravirtualization Drivers):

- viogpu Driver: Implemented dynamic framebuffer resizing with indirect descriptor support for 8K+ reso-
lutions (PR#1479), fixed BSOD crash in error path (PR#1473), and resource leak on init failure (PR#1475)

- Installer: Fixed driver upgrade failure when drivers are in use, preventing error 1603 during system up-
grades (PR#85)

4. GradleAndroidRustPlugin: Resolved Rust/Android cross-compilation ABI compatibility and Gradle 9 upgrade
adaptation (PR#10, PR#11)

5. InfiniTime: Contributed CMake build fixes and Chinese support for smartwatch firmware (PR#2143)

+ Selected for Linux Foundation Talent Incentive Program, adaptable to cross-timezone collaboration

Power by LaTeX and Emacs. Written by Xiangzhe and Al

https://xzos.net
https://github.com/xz-dev
mailto:xz@xzos.net
tel:+8615530859511
https://github.com/Klavis-AI/klavis/pull/788
https://github.com/Klavis-AI/klavis/pull/833
https://github.com/Klavis-AI/klavis/pull/836
https://github.com/DUpdateSystem/UpgradeAll
https://github.com/xz-dev/distrobox-boost
https://github.com/xz-dev/numlockw
https://github.com/gentoo/gentoo/pull/44885
https://github.com/Szowisz/CachyOS-kernels
https://github.com/virtio-win/kvm-guest-drivers-windows/pull/1479
https://github.com/virtio-win/kvm-guest-drivers-windows/pull/1473
https://github.com/virtio-win/kvm-guest-drivers-windows/pull/1475
https://github.com/virtio-win/virtio-win-guest-tools-installer/pull/85
https://github.com/MatrixDev/GradleAndroidRustPlugin/pull/10
https://github.com/MatrixDev/GradleAndroidRustPlugin/pull/11
https://github.com/InfiniTimeOrg/InfiniTime/pull/2143

Work Experience

Klavis AI - Full Stack Engineer / MCP Platform Architect 2025.7 - 2025.12
As a core founding engineer, led the infrastructure development for the Al Agent integration platform. Responsible

for full-stack architecture design from low-level protocol implementation (MCP) to the upper-layer OpenAPI conversion

engine (Strata), solving the standardization challenges of Al model interoperability with 20+ external SaaS services.
Core Architecture & Platform Development:

* Led Strata OpenAPI Engine Development: Designed the core parsing engine capable of automatically converting
any OpenAPI v2/v3 specification into standardized MCP tool definitions

+ Extreme Performance Optimization: Through OpenAPI object pre-build caching and jsonref deep parsing optimiza-
tion, reduced complex specification parsing time from 15 minutes (single-threaded) to 3 seconds, a 300x perfor-
mance improvement

* Production Value: Completely resolved Google Cloud Run performance bottlenecks during Serverless cold starts
and high-concurrency scaling, achieving zero-downtime deployment

* Enterprise MCP Runtime Architecture: Designed process isolation model ensuring high-risk tools like Playwright
run in independent sandboxes; built unified OAuth authentication gateway supporting 10+ platforms including
Microsoft Entra (Azure AD), GitHub, PayPal, Sentry

DevOps & Private Cloud Delivery:

* Built On-Premise Deployment Architecture from Scratch: Designed and implemented complete private cloud de-
livery solution based on Kubernetes + Helm, implementing on-demand loading and auto-hibernation mechanisms
for MCP services

+ Elastic Scaling: Integrated KEDA HTTP Add-on, implementing Pod auto-scaling based on real-time HTTP traffic

* Full-Stack CI/CD Pipeline: Built GitHub Actions automation system, implementing multi-architecture (amd64/armé64)
Docker image builds, security scanning (Trivy), and automatic distribution

Microsoft (Vendor) - Office365 Interoperability and Compliance Project - Full Stack Engineer 2023.10 - 2025.7
Responsible for toolchain development and compliance engineering for the Office document ecosystem, led cloud-
native transformation of internal systems and automated testing infrastructure development.

+ Cloud-Native Architecture Transformation: Decoupled legacy .NET Framework monolithic applications into mi-
croservice architecture based on Azure Container and Azure Functions, replaced traditional credentials with Azure
Managed Identity, reducing resource costs by 85% and eliminating security compliance risks

+ Automated Testing Platform: Designed "code as configuration” Python automation testing framework, combined
OCR visual recognition technology and GPT models, implemented end-to-end automated testing for Office Word
character rendering compatibility, reducing manual testing workload by 80%

+ Document Engineering Intelligence: Deep research into Office Open XML (OOXML) underlying structure, developed
LLM-based document terminology consistency verification tool, improving GB certification document correction
efficiency by 96% (from 2.5 hours to 5 minutes)

Talkweb Information - China Unicom A-Share Portal Website - JAVA Backend Developer 2022.2 - 2022.7

The Unicom A-Share portal website, due to years of neglect and outdated technology, was difficult to deploy and
maintain. Responsible for the microservice design and code rewrite of the project backend, implementing k8s pipeline
deployment and automated scaling.

* Restructured the project using microservice architecture
* Adopted agile development methods

* Implemented dynamically scalable k8s deployment

Power by LaTeX and Emacs. Written by Xiangzhe and Al

Project Experience

Open Source Project - UpgradeAll Full Stack Application Updater - Project Initiator 2019.4 - Present

Project Links: UpgradeAll (Kotlin/Rust client), Server (Python server, 2020.3-2022.6.5)

Led a six-person team in collaborative development of the free open-source software UpgradeAll, solving the frag-
mentation problem in traditional software updates. Simplified the update search process for Android applications (in-
cluding uninstalled apps), Magisk modules, etc. The project aims to provide a fast and user-friendly application update
experience. The client has received 1k+ Stars.

Client Highlights (Kotlin+Rust):

+ Developed frontend with Kotlin, implementing Material Design interface and related components

+ Developed high-performance backend library using Rust, with modular code design; the kernel can be used inde-
pendently

+ Implemented highly customizable settings, supporting update sources configuration viaJson. Embedded JavaScript
engine enabling application hot update capability

Server Highlights (Python):

* Provided client gRPC and REST interfaces, supporting application updates from multiple sources including GitHub,
GitLab, F-Droid, Play Store, etc.

* Used ZeroMQ to implement microservice architecture and service discovery, designed a horizontally scalable multi-
layer cache service architecture

+ Used Redis to implement distributed data caching, deployed services using Docker containerization technology
Project Outcomes:

+ Significantly reduced user application update time from 30 minutes to 2 minutes, automating what was previously
a manual search process

* Built a one-stop application update platform integrating multiple update sources

Microsoft - Office Word Automated Testing Platform - Python Development 2024.3 - 2025.7
Project Background: Office Word requires extensive character compatibility and rendering tests to ensure product
quality. Traditional manual testing methods are inefficient and consume significant resources from the testing team. To
address this issue, I was responsible for developing an automated testing platform to execute hundreds of test cases
weekly.
Project Contributions:

+ Designed and implemented a Python automation testing framework specifically for Office Word software compat-
ibility verification

+ Innovatively adopted a “code as configuration” test system architecture, allowing testers to efficiently define test
rules through Al assistance and IDE environment

+ Integrated Windows API interfaces to simulate user operations, building end-to-end automated testing processes

+ Developed an OCR-based rendering result recognition system to improve the accuracy of character compatibility
testing

+ Implemented batch test scheduling in virtual machine environments to support large-scale parallel test execution
Project Outcomes:

+ Achieved automated execution of 800+ test cases weekly, significantly improving test coverage. Reduced manual
testing time by approximately 50%

* Improved product quality through systematic testing, reducing user feedback rates for character rendering issues

Microsoft - GB Document Verification and Correction Tool - Python Development 2024.6 - 2025.7
Project Background: Microsoft Office suite needs to pass GB certification, requiring standardized test result docu-
ments from the testing team. When merging documents, issues such as inconsistent terminology and format disruption
often occur. To solve these problems, I developed an automated tool to verify and correct documents, ensuring they
meet standard requirements.
Project Contributions:

Power by LaTeX and Emacs. Written by Xiangzhe and Al

https://github.com/DUpdateSystem/UpgradeAll
https://github.com/DUpdateSystem/Server

* Thoroughly researched the internal structure of Word document Open XML, mastering document format control
mechanisms

+ Implemented cut, copy, and paste functionalities not supported by python-docx
+ Utilized LLM for intelligent replacement of professional terminology, ensuring document terminology consistency

+ Used python-docx and oxml libraries for OXML low-level operations, solving formatting errors that occurred after
merging multiple documents

Project Outcomes:

* Reduced document verification and correction time by 96.67%, from an average of 2.5 hours to 5 minutes per
person

* Ensured terminology consistency and format standardization for all GB certification documents, improving certifi-
cation pass rates

* Reduced the testing team’s workload on document formatting adjustments, allowing them to focus on the test
content itself

+ Wrote a technical blog "Cut and move Runs via python-docx"”, contributing solutions to the open source community

Microsoft - Gendox Document Management System - C# Development 2023.10 - 2025.7
Project Background: Gendox is Microsoft's internal document management tool, which automatically converts to wiki
in the form of a Word plugin. It provides product managers with a structured document writing environment, adopting
the "build menu first, then fill in content” method, supporting cross-document sharing and synchronous modification of
document fragments. The project covers the entire process from editing to publishing, integrating core functions such
as version control, automated building, and security assurance.
Project Contributions:

* Researched GenDox plugin loading and running efficiency, developed Python-based and image recognition-based
automated testing tools

* Built an automatic publishing system based on Azure Pipeline, achieving continuous delivery of new versions.
Refactored the Release tool

+ Designed an Azure Function automatic archiving solution, integrated PowerBI automated telemetry data collection
to generate real-time dashboards and email alert systems

+ Upgraded the security model, migrating from password-based authentication to Azure Managed Identity, and
wrote standardized migration documentation

+ Developed Azure Serverless-based automation tools to automatically apply Patch Tuesday updates for VMs
Project Outcomes:
+ Efficiently processed up to 30GB and 400,000 files weekly for releases

+ Simplified team collaboration processes, reduced new version testing time, eliminated cross-team manual han-
dovers, saving approximately 3 person-days of work per release

+ Implemented automatic log checking, eliminating oversight risks from manual reviews, reducing potential delays
and losses

+ Automated monthly maintenance work, saving 1 person-day per month for system inspection and updates
+ Completed Microsoft Q3 quarter security requirements, enhancing overall system security

Microsoft - Interop Department Data Synchronization and Training Management System Improvement - C# Develop-
ment 2023.10 -
2025.7

Project Background: This system serves as a core tool for the Office Interop department, undertaking two key func-
tions: cross-project personnel and document data warehouse synchronization, and employee training management.
The old system had issues such as slow operation, outdated technology, and security architecture.

Project Contributions:

* The original Task Scheduler-based fixed-time execution mode ran for over 12 hours daily; implemented service
dependency scripts and fragmented execution with PowerShell

Power by LaTeX and Emacs. Written by Xiangzhe and Al

https://xzos.net/cut-and-move-runs-via-python-docx/

+ Upgraded the project security architecture to meet the latest security standards, integrated CodeQL into Azure
Pipeline to achieve automated detection and continuous integration of code security

* Led the project’s microservice transformation, decoupling the monolithic application into independent service com-
ponents, implementing migration from .NET Framework to .NET through Azure Container technology

Project Outcomes:

* Reduced Azure resource costs by 85%, decreased scheduling system runtime by 50%, improved throughput and
stability

+ Fully met Microsoft's latest security compliance requirements; microservice architecture completely eliminated VM
maintenance-related security risks

+ The microservice gray migration solution achieved zero-downtime system upgrades, ensuring a continuously smooth
user experience

Tsinghua University Laboratory Project - IPFS-based File Sharing Application - Android Client Development 2021.4 -
2021.5

Project Background: Traditional file transfer methods face bandwidth limitations and high server dependency. This
project aimed to leverage the distributed nature of IPFS (InterPlanetary File System) to build a file sharing application
that supports both face-to-face high-speed transmission and stable long-distance sharing.

Supervisor: Li Zhao

Project Contributions:

+ Designed and developed Android client prototype, implementing core functionalities and user interface
+ Integrated IPFS protocol, building an efficient P2P file transfer network

+ Implemented Wi-Fi Direct-based face-to-face transfer functionality, significantly improving short-distance transfer
speed

+ Developed end-to-end encryption system, ensuring file transfer security

+ Designed intuitive file preview interface, optimizing user experience

Project Outcomes:

+ Short-distance transfer speed reached 3-5 times that of traditional cloud storage solutions, achieving 1GB/S

* Successfully implemented a P2P file sharing system without relying on central servers, improving performance and
stability

+ Served as the core implementation part of a graduate thesis, highly praised by the supervisor

Education

North China University of Science and Technology - Computer Science and Technology - Bachelor’s Degree 2023.6
Courses: Network Principles, Computer Principles, Software Engineering, Algorithm Design and Analysis, Object-
oriented Programming, Database Principles, Operating Systems (Teaching Assistant)

Awards & Honors
ASC18 World University Supercomputer Competition - Second Prize

Power by LaTeX and Emacs. Written by Xiangzhe and Al

